Deep neural networks have recently achieved considerable improvements in learning human behavioral patterns and individual preferences from massive spatial-temporal trajectories data. However, most of the existing research concentrates on fusing different semantics underlying sequential trajectories for mobility pattern learning which, in turn, yields a narrow perspective on comprehending human intrinsic motions. In addition, the inherent sparsity and under-explored heterogeneous collaborative items pertaining to human check-ins hinder the potential exploitation of human diverse periodic regularities as well as common interests. Motivated by recent advances in disentanglement learning, in this study we propose a novel disentangled solution called SSDL for tackling the next POI prediction problem. SSDL primarily seeks to disentangle the potential time-invariant and time-varying factors into different latent spaces from massive trajectories data, providing an interpretable view to understand the intricate semantics underlying human diverse mobility representations. To address the data sparsity issue, we present two realistic trajectory augmentation approaches to enhance the understanding of both the human intrinsic periodicity and constantly-changing intents. In addition, we devise a POI-centric graph structure to explore heterogeneous collaborative signals underlying historical check-ins. Extensive experiments conducted on four real-world datasets demonstrate that our proposed SSDL significantly outperforms the state-of-the-art approaches -- for example, it yields up to 8.57% improvements on ACC@1.
翻译:深心神经网络最近在学习人类行为模式和个人偏好方面最近取得了相当大的改进,学习了大量空间时空轨迹数据,但是,大多数现有研究集中于在移动模式学习的顺序轨迹背后使用不同的语义,这反过来又为理解人的内在动作提供了狭隘的视角。此外,与人类检查有关的内在宽度和探索不足的多元合作项目阻碍了人类不同周期规律和共同利益的潜在利用。受最近分解学习进展的激励,我们在本研究中提出了一个新的分解解决方案,称为SSDL,用于解决下一个POI预测问题。SDL主要寻求将潜在的时间变化和时间变化因素从大规模轨迹数据中分解到不同的潜在空间,提供可解释的视角,以了解人类不同周期和共同利益背后的错综复杂的语义性。为了解决数据紧张问题,我们提出了两种现实的轨迹强化方法,以增进对人类内在周期和不断变化的意向的理解。此外,我们还试图将潜在的时间变化和时间变化因素分解开来分解,从巨大的时间空间空间中解开来,从巨大的轨迹模型结构上展示了我们所建的模型模型模型。