A good feature representation is the key to image classification. In practice, image classifiers may be applied in scenarios different from what they have been trained on. This so-called domain shift leads to a significant performance drop in image classification. Unsupervised domain adaptation (UDA) reduces the domain shift by transferring the knowledge learned from a labeled source domain to an unlabeled target domain. We perform feature disentanglement for UDA by distilling category-relevant features and excluding category-irrelevant features from the global feature maps. This disentanglement prevents the network from overfitting to category-irrelevant information and makes it focus on information useful for classification. This reduces the difficulty of domain alignment and improves the classification accuracy on the target domain. We propose a coarse-to-fine domain adaptation method called Domain Adaptation via Feature Disentanglement~(DAFD), which has two components: (1)the Category-Relevant Feature Selection (CRFS) module, which disentangles the category-relevant features from the category-irrelevant features, and (2)the Dynamic Local Maximum Mean Discrepancy (DLMMD) module, which achieves fine-grained alignment by reducing the discrepancy within the category-relevant features from different domains. Combined with the CRFS, the DLMMD module can align the category-relevant features properly. We conduct comprehensive experiment on four standard datasets. Our results clearly demonstrate the robustness and effectiveness of our approach in domain adaptive image classification tasks and its competitiveness to the state of the art.
翻译:良好的特征代表是图像分类的关键。 在实践中, 图像分类可能应用到与所培训的图像不同的情景中。 这种所谓的域变导致图像分类的性能显著下降。 不受监督的域调整( UDA) 通过将从标签源域到未标签目标域的知识从标签源域转移到未标签目标域, 减少了域变。 我们为 UDA 执行特性分解, 方法是将与类别相关的特性蒸馏出与类别相关的特性, 并排除与类别无关的特性。 这种分解使网络无法过度适应与类别有关的信息, 使其侧重于对分类有用的信息。 这减少了域调整难度, 提高了目标域分类的准确性。 我们提议了一种叫做“ 以特性分解方式适应” 的域调整方法。 我们提出了一种叫做“ 域调整” 调和“ DMDDFD” 的域, 它有两个组成部分:(1) 类别与与分类相关特性不相干, 和“ 本地最大偏差” (DMDDD) 模块中, 与我们的最新性调整, 与我们的最新性定义中, 与我们的最新性定义 的模型与我们的统一性调整。