项目名称: 基于microRNA调控叶酸对转基因AD小鼠神经干细胞作用机制的研究

项目编号: No.81202200

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 预防医学、地方病学、职业病学、放射医学

项目作者: 刘欢

作者单位: 天津医科大学

项目金额: 23万元

中文摘要: 阿尔茨海默病(AD)临床尚无特效治疗手段,寻求激活内源性神经干细胞(NSCs)治疗AD的方法是目前研究热点。前期研究发现叶酸能促进NSCs增殖分化,但其具体调控机制和对AD动物神经发生的作用尚不清楚。microRNA (miRNA) 是一类单链非编码小分子RNA,通过对基因表达的调控,在细胞增殖与分化及某些疾病发生过程中发挥重要作用。本研究拟运用miRNA芯片技术,筛选叶酸作用下AD转基因小鼠脑组织差异表达的miRNA,同时观察叶酸对AD小鼠NSCs增殖分化的影响,运用生物信息学手段和分子生物学技术寻找靶向NSCs增殖分化和AD相关基因的候选miRNA。利用原位杂交,实时定量PCR及miRNA干扰方法,在组织和细胞水平进行确证,深入研究候选miRNA对AD小鼠神经发生的作用和叶酸对其表达的影响,从而为探索利用内源性NSCs治疗AD和叶酸防治神经退行性疾病的机制提供科学依据。

中文关键词: 叶酸;阿尔茨海默病;microRNA;Aβ沉积;

英文摘要: There is no specific clinical treatment for Alzheimer's disease (AD) so far. Seeking the methods to stimulate endogenous neural stem cells (NSCs) to treat AD is one of the research hotspots at present. We previously found that folic acid can promote NSCs proliferation and differentiation. However, the impacts of folic acid on neurogenersis of AD animal and its specific regulatory mechanisms are still not clear. MicroRNAs (miRNAs) are single-stranded noncoding short RNAs, which are important players in the processes of cell proliferation and differentiation. They also participate in certain diseases through regulating genes expression. In this project, we will measure the global miRNA expression by miRNA array and find differentially expressed miRNAs in AD transgenic mouse brain tissue under intervention of folic acid. The effects of folic acid on NSCs proliferation and differentiation will be detected in the same time. Bioinformatics tools and molecular biology techniques will be used to find candidate miRNAs which involved NSCs proliferation and differentiation and AD process. In order to study the regulation mechanism of candidate miRNAs in neurogenersis of AD animal, situ hybridization, real-time PCR and miRNA interference technology are used to confirm the expression of miRNAs and their target genes. The ul

英文关键词: folic acid;Alzheimer's disease;microRNA;Aβ deposition;

成为VIP会员查看完整内容
0

相关内容

 100页!IEEE标准协会《脑机接口神经技术标准路线图》
专知会员服务
33+阅读 · 2022年2月13日
AI药物研发发展研究报告(附报告)
专知会员服务
90+阅读 · 2022年2月11日
专知会员服务
62+阅读 · 2021年9月20日
元学习-生物医学中连接标记和未标记数据
专知会员服务
30+阅读 · 2021年8月3日
边缘机器学习,21页ppt
专知会员服务
83+阅读 · 2021年6月21日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
Nature 一周论文导读 | 2019 年 5 月 30 日
科研圈
15+阅读 · 2019年6月9日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
3+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员