Extensive research works demonstrate that the attention mechanism in convolutional neural networks (CNNs) effectively improves accuracy. Nevertheless, few works design attention mechanisms using large receptive fields. In this work, we propose a novel attention method named Rega-net to increase CNN accuracy by enlarging the receptive field. Inspired by the mechanism of the human retina, we design convolutional kernels to resemble the non-uniformly distributed structure of the human retina. Then, we sample variable-resolution values in the Gabor function distribution and fill these values in retina-like kernels. This distribution allows essential features to be more visible in the center position of the receptive field. We further design an attention module including these retina-like kernels. Experiments demonstrate that our Rega-Net achieves 79.96% top-1 accuracy on ImageNet-1K classification and 43.1% mAP on COCO2017 object detection. The mAP of the Rega-Net increased by up to 3.5% compared to baseline networks.
翻译:广泛的研究工作表明,进化神经网络(CNNs)的注意机制能够有效提高准确性。然而,很少使用大可接收场来设计注意机制。在这项工作中,我们建议采用名为Rega-net的新关注方法,通过扩大可接收场来提高CNN的准确性。在人类视网膜机制的启发下,我们设计进化内核以类似于人类视网膜的非统一分布结构。然后,我们抽样加博函数分布中的可变分辨率值,并将这些值填入视网式内核。这种分布使得基本特征在可接收场的中心位置更加明显。我们进一步设计了一个关注模块,包括这些视网式内核。实验表明,我们的Rega-Net在图像Net-1K分类上达到了79.96%的顶端-1精确度,在COCO2017天体探测上达到了43.1%的毫帕。Rega-Net的MAP比基线网络增加了3.5%。</s>