Reliable methods for the classification and quantification of quantum entanglement are fundamental to understanding its exploitation in quantum technologies. One such method, known as Separable Neural Network Quantum States (SNNS), employs a neural network inspired parameterisation of quantum states whose entanglement properties are explicitly programmable. Combined with generative machine learning methods, this ansatz allows for the study of very specific forms of entanglement which can be used to infer/measure entanglement properties of target quantum states. In this work, we extend the use of SNNS to mixed, multipartite states, providing a versatile and efficient tool for the investigation of intricately entangled quantum systems. We illustrate the effectiveness of our method through a number of examples, such as the computation of novel tripartite entanglement measures, and the approximation of ultimate upper bounds for qudit channel capacities.
翻译:量子纠缠的可靠分类和量化方法对于了解其在量子技术中的利用情况至关重要。一种方法,即“分解神经网络量子网国家”(SNNS),采用由神经网络启发的量子状态参数,其纠缠特性明显可以编程。结合基因化机器学习方法,这种安萨兹可以研究非常具体的纠缠形式,可用于推断/测量目标量子国家缠绕特性。在这项工作中,我们将SNNS的使用扩大到混合的、多部分的国家,为调查错综复杂缠绕的量子系统提供多种有效的工具。我们通过一些例子来说明我们的方法的有效性,例如计算新的三方缠绕措施,以及量子频道能力的终端界限的近似值。