We introduce a general approach for modeling the dynamic of multivariate time series when the data are of mixed type (binary/count/continuous). Our method is quite flexible and conditionally on past values, each coordinate at time $t$ can have a distribution compatible with a standard univariate time series model such as GARCH, ARMA, INGARCH or logistic models whereas past values of the other coordinates play the role of exogenous covariates in the dynamic. The simultaneous dependence in the multivariate time series can be modeled with a copula. Additional exogenous covariates are also allowed in the dynamic. We first study usual stability properties of these models and then show that autoregressive parameters can be consistently estimated equation-by-equation using a pseudo-maximum likelihood method, leading to a fast implementation even when the number of time series is large. Moreover, we prove consistency results when a parametric copula model is fitted to the time series and in the case of Gaussian copulas, we show that the likelihood estimator of the correlation matrix is strongly consistent. We carefully check all our assumptions for two prototypical examples: a GARCH/INGARCH model and logistic/log-linear INGARCH model. Our results are illustrated with numerical experiments as well as two real data sets.
翻译:当数据为混合型(双子/计算/连续)时,我们采用一个通用的多变时间序列动态模型。我们的方法相当灵活,并以过去值为条件。我们首先研究这些模型的通常稳定性特性,然后表明,自动递减参数可以使用一种假最大可能性方法持续地按等式对等法对等分布,即使时间序列的数量很大,也会导致快速实施。此外,如果将参数类差模型与时间序列相匹配,并且就高氏体模型而言,我们证明一致性的结果,我们显示,相关矩阵的可能性估计值在动态中也非常一致。我们首先研究这些模型的通常稳定性特性,然后表明,自动递增参数可以使用一种假最大可能性的方法对等式对等法进行一致估计,即使时间序列数量很大,也会导致快速执行。我们用参数对等相对等的相差模型和数字模型来证明我们的一致性结果。我们仔细核对了我们的所有假设,作为两个模拟的模型/模拟模型,我们用两个模拟的逻辑模型来验证了我们的数据。