The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem, and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters, in contrast to the prediction error of the parameters. This loss function was recently introduced in Elmachtoub and Grigas (2022) and referred to as the Smart Predict-then-Optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out-of-sample, in the context of the SPO loss. Since the SPO loss is non-convex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points, but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions, and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.
翻译:预测- 最佳化框架在许多实际环境中至关重要: 预测一个优化问题的未知参数, 然后用参数的预测值解决问题。 这个环境中的自然损失函数是考虑预测参数引起的决定成本, 与参数的预测错误相对照。 这个损失函数最近引入了 Elmachtoub 和 Grigas( 2022年), 被称为智能预测- 最佳化( SPO) 损失 。 在这项工作中, 我们试图提供一个界限, 说明在培训数据上适合的预测模型的性能如何在 SPO 损失的背景下, 概括地差值。 由于 SPO 损失是非电流值和非Lipschitz, 得出总的结果不适用。 我们首先根据Natarajan 的维值, 在一个综合可行的区域中, 在最有逻辑性的极端点数中, 规模的预测模型, 但是, 在通用的Convelople 值范围内, 直线线性依赖 SPO 的数值分析, 也就是我们最终的数值分析, 我们的数值分析, 直径直径直线性地值 的数值, 直线性地, 直线性地, 递地根根根根的数值的数值 直线性能 直径直线性 直线性地, 直线性地根, 直线性地, 直线性地根根系 直线性地根系, 直线性地 根根,, 根, 根根根根根根根根根根根根根根根根根根根根根根根根根根系, 。