Daily manipulation tasks are characterized by geometric primitives related to actions and object shapes. Such geometric descriptors are poorly represented by only using Cartesian coordinate systems. In this paper, we propose a learning approach to extract the optimal representation from a dictionary of coordinate systems to encode an observed movement/behavior. This is achieved by using an extension of Gaussian distributions on Riemannian manifolds, which is used to analyse a set of user demonstrations statistically, by considering multiple geometries as candidate representations of the task. We formulate the reproduction problem as a general optimal control problem based on an iterative linear quadratic regulator (iLQR), where the Gaussian distribution in the extracted coordinate systems are used to define the cost function. We apply our approach to object grasping and box opening tasks in simulation and on a 7-axis Franka Emika robot. The results show that the robot can exploit several geometries to execute the manipulation task and generalize it to new situations, by maintaining the invariant characteristics of the task in the coordinate system(s) of interest.
翻译:日常操作任务的特点是与动作和物体形状有关的几何原始特征。 这些几何描述仪仅用笛卡尔坐标系统来代表不甚清楚。 在本文中, 我们提出一种学习方法, 从坐标系统字典中提取最佳表达法, 以编码观察到的移动/行为。 这是通过在里曼尼亚方块上扩展高森分布法实现的。 该方法用于从统计上分析一套用户演示, 将多种地理特征作为任务的候选表达法。 我们根据迭代线性线性二次调节器( iLQR) 将复制问题表述为一般最佳控制问题, 使用提取的坐标系统中的高斯分布法来界定成本功能。 我们运用我们的方法, 在模拟和7轴的弗兰克· 埃米卡机器人中, 将锁定和框框中的任务。 结果显示, 机器人可以利用数个地理模型来执行操纵任务, 并将其概括为新情况。 我们根据迭代线性线性二次调控管器( iLQR), 将复制问题作为一般最佳控制问题作为一般最佳控制问题,, 即使用提取坐标坐标系统中的高斯分布用于确定成本功能。 我们用这个方法, 。 我们在模拟和7轴操作系统中的操作器中, 。