项目名称: 偶应力/应变梯度理论的精化不协调元方法

项目编号: No.11202039

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 赵杰

作者单位: 大连海事大学

项目金额: 24万元

中文摘要: 偶应力/应变梯度理论是成功解释尺度效应的连续介质理论,其相应的数值方法是微纳结构研究的必要基础。偶应力/应变梯度理论的势能泛涵同时包含位移的一、二阶导数,建立协调有限单元需满足位移插值函数C1连续。然而,C1协调单元的节点参数含有位移的高阶导数,构造和应用都较为困难。对于目前广泛采用的C0单元,需要通过Lagrange乘子或罚函数来约束独立插值的位移和位移梯度,由此带来额外的计算量和计算结果的不确定性。相对于协调单元,不协调单元放松了单元间的连续条件,可以构造更为灵活的单元函数,便于建立高精度单元。本项目将研究偶应力/应变梯度理论不协调元的收敛准则,提出一类放松单元间连续性要求的变分原理,建立同时满足C0连续(或弱连续)、二次完备和C1弱连续的精化不协调单元。通过对偶应力/应变梯度理论精化不协调元方法的系统研究可以加速推进该理论的研究和工程应用,促进微纳技术的发展。

中文关键词: 偶应力/应变梯度理论;有限元;变分原理;弱连续;分片检验

英文摘要: Couple stress/strain gradient theory is a type of constitutive theory which can successfully explain the size effects and the related numerical method is the necessity of micro/nano structure research. The displacement interpolation function of conforming element should satisfy the requirement of C1 continuity as first and second derivatives of the displacement are involved in potential energy principle of the couple stress/strain gradient theory. C1 conforming elements contain the nodal parameters with high order derivatives, and are complicated to construct and implement. Currently, the most widely used couple stress/strain gradient elements are C0 elements, in which displacements and displacement gradients are interpolated independently and their kinematic constraints are enforced via the penalty or Lagrange multiplier method. Consequently, the computation cost is dramatically increased and the analysis results are varied with the penalty function. Compared with the conforming element methods, it is easier for the nonconforming element methods to establish high-performance elements as they relax the continuity condition more loosely and offer more flexible interpolation algorithms. In this item we will study the convergence criteria of nonconforming elements for couple stress/strain gradient theory and propos

英文关键词: Couple stress/Strain gradient theory;Finite element;variational principle;weak continuity;Patch test

成为VIP会员查看完整内容
0

相关内容

逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
24+阅读 · 2021年7月22日
专知会员服务
24+阅读 · 2021年4月21日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
26+阅读 · 2020年11月14日
专知会员服务
45+阅读 · 2020年11月13日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
输入梯度惩罚与参数梯度惩罚的一个不等式
PaperWeekly
0+阅读 · 2021年12月27日
【博士论文】分形计算系统
专知
2+阅读 · 2021年12月9日
魏哲巍:图神经网络的理论基础
图与推荐
0+阅读 · 2021年11月5日
【速览】TPAMI丨泛化边缘保持和结构保持图像平滑模型
中国图象图形学学会CSIG
1+阅读 · 2021年10月15日
CVPR2019 | 文本检测算法综述
极市平台
34+阅读 · 2019年5月30日
综述:DenseNet—Dense卷积网络(图像分类)
专知
85+阅读 · 2018年11月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关主题
相关VIP内容
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
24+阅读 · 2021年7月22日
专知会员服务
24+阅读 · 2021年4月21日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
26+阅读 · 2020年11月14日
专知会员服务
45+阅读 · 2020年11月13日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员