We study the kernelization of exploration problems on temporal graphs. A temporal graph consists of a finite sequence of snapshot graphs $\mathcal{G}=(G_1, G_2, \dots, G_L)$ that share a common vertex set but might have different edge sets. The non-strict temporal exploration problem (NS-TEXP for short) introduced by Erlebach and Spooner, asks if a single agent can visit all vertices of a given temporal graph where the edges traversed by the agent are present in non-strict monotonous time steps, i.e., the agent can move along the edges of a snapshot graph with infinite speed. The exploration must at the latest be completed in the last snapshot graph. The optimization variant of this problem is the $k$-arb NS-TEXP problem, where the agent's task is to visit at least $k$ vertices of the temporal graph. We show that under standard computational complexity assumptions, neither of the problems NS-TEXP nor $k$-arb NS-TEXP allow for polynomial kernels in the standard parameters: number of vertices $n$, lifetime $L$, number of vertices to visit $k$, and maximal number of connected components per time step $\gamma$; as well as in the combined parameters $L+k$, $L + \gamma$, and $k+\gamma$. On the way to establishing these lower bounds, we answer a couple of questions left open by Erlebach and Spooner. We also initiate the study of structural kernelization by identifying a new parameter of a temporal graph $p(\mathcal{G}) = \sum_{i=1}^{L} (|E(G_i)|) - |V(G)| +1$. Informally, this parameter measures how dynamic the temporal graph is. Our main algorithmic result is the construction of a polynomial (in $p(\mathcal{G})$) kernel for the more general Weighted $k$-arb NS-TEXP problem, where weights are assigned to the vertices and the task is to find a temporal walk of weight at least $k$.


翻译:我们在时间图中研究勘探问题的内核。 时间图包含一个限定的缩略图序列 $\ mathcal{G$}( G_ 1, G_ 2,\ dots, G_L) 美元, 共享共同的顶点集, 但可能有不同的边缘组。 由 Erlebach 和 Spooner 引入的非限制时间勘探问题( NS- TEXP 简称) 。 询问一个代理器是否可以访问给定时间图的所有悬浮 。 该代理器所穿透的边缘出现在非限制的单数内数内, 也就是说, 该代理器可以沿着快速图的边缘移动 $- g_ g_ 美元 。 最优化的变量是 $-arb NS- TEXP 问题, 该代理器的任务是访问至少$美元的时间图的顶点 。 我们显示, 在标准计算假设下, NS- EXP 和 $ 美元 美元 的内端域域域域值内, 也能够访问这些直径的内 数内, 美元内, 数字内, 数字内, 的电流 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月8日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员