Nonsmooth composite optimization with orthogonality constraints has a broad spectrum of applications in statistical learning and data science. However, this problem is generally challenging to solve due to its non-convex and non-smooth nature. Existing solutions are limited by one or more of the following restrictions: (i) they are full gradient methods that require high computational costs in each iteration; (ii) they are not capable of solving general nonsmooth composite problems; (iii) they are infeasible methods and can only achieve the feasibility of the solution at the limit point; (iv) they lack rigorous convergence guarantees; (v) they only obtain weak optimality of critical points. In this paper, we propose \textit{\textbf{OBCD}}, a new Block Coordinate Descent method for solving general nonsmooth composite problems under Orthogonality constraints. \textit{\textbf{OBCD}} is a feasible method with low computation complexity footprints. In each iteration, our algorithm updates $k$ rows of the solution matrix ($k\geq2$ is a parameter) to preserve the constraints. Then, it solves a small-sized nonsmooth composite optimization problem under orthogonality constraints either exactly or approximately. We demonstrate that any exact block-$k$ stationary point is always an approximate block-$k$ stationary point, which is equivalent to the critical stationary point. We are particularly interested in the case where $k=2$ as the resulting subproblem reduces to a one-dimensional nonconvex problem. We propose a breakpoint searching method and a fifth-order iterative method to solve this problem efficiently and effectively. We also propose two novel greedy strategies to find a good working set to further accelerate the convergence of \textit{\textbf{OBCD}}. Finally, we have conducted extensive experiments on several tasks to demonstrate the superiority of our approach.


翻译:非光滑组合优化在统计学习和数据科学中有广泛的应用。然而,由于其非凸和非光滑的特性,这个问题通常是很难解决的。现有解决方案受到以下一个或多个限制的限制:(i)它们是需要每次迭代高计算成本的全梯度法;(ii)它们不能解决通用的非光滑组合问题;(iii)它们是不可行的方法,只能在极限点处实现解的可行性;(iv)它们缺乏严格的收敛保证;(v)它们只能获得关键点的弱最优性。在本文中,我们提出了一种新的块坐标下降方法OBCD,用于在正交约束条件下解决通用的非光滑组合问题。OBCD是一种可行的方法,具有低计算复杂度。在每次迭代中,算法更新解矩阵的k行(k≥2是一个参数)以保持约束。然后,它精确或近似地解决一个小规模的非光滑组合最优化问题在正交约束条件下。我们证明了任何一个精确的块-k稳定点总是一个近似的块-k稳定点,这相当于临界稳定点。我们特别关注k=2的情况,因为得到的子问题将缩小到一个一维的非凸问题。我们提出了一个断点搜索方法和一个五阶迭代方法来高效地解决这个问题。我们还提出了两种新颖的贪心策略来寻找一个良好的工作集,进一步加速OBCD的收敛。最后,我们在几个任务上进行了广泛的实验,以证明我们方法的优越性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
41+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
IJCAI 2022 | 使用陈述句进行视觉问答的Prompt Tuning
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
7+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月23日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
IJCAI 2022 | 使用陈述句进行视觉问答的Prompt Tuning
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
7+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员