We present estimators for smooth Hilbert-valued parameters, where smoothness is characterized by a pathwise differentiability condition. When the parameter space is a reproducing kernel Hilbert space, we provide a means to obtain efficient, root-n rate estimators and corresponding confidence sets. These estimators correspond to generalizations of cross-fitted one-step estimators based on Hilbert-valued efficient influence functions. We give theoretical guarantees even when arbitrary estimators of nuisance functions are used, including those based on machine learning techniques. We show that these results naturally extend to Hilbert spaces that lack a reproducing kernel, as long as the parameter has an efficient influence function. However, we also uncover the unfortunate fact that, when there is no reproducing kernel, many interesting parameters fail to have an efficient influence function, even though they are pathwise differentiable. To handle these cases, we propose a regularized one-step estimator and associated confidence sets. We also show that pathwise differentiability, which is a central requirement of our approach, holds in many cases. Specifically, we provide multiple examples of pathwise differentiable parameters and develop corresponding estimators and confidence sets. Among these examples, four are particularly relevant to ongoing research by the causal inference community: the counterfactual density function, dose-response function, conditional average treatment effect function, and counterfactual kernel mean embedding.
翻译:我们提出了连续可微条件下光滑希尔伯特值参数的估计器。当参数空间是再生核希尔伯特空间时,我们提供了一种获取高效、根n速度估计器和相应置信区间的手段。这些估计器对应于基于希尔伯特值高效影响函数的交叉配备的一步估计器的推广。即使使用任意的景观函数估计器,包括基于机器学习技术的估计器,我们也给出了理论保证。当没有再生核时,我们发现许多有趣的参数即使它们是路径可微的,也缺乏高效的影响函数,这是一个不幸的事实。为了处理这些情况,我们提出了一个正则化的一步估计器和相应的置信区间。我们还显示了路径可微性,在我们的方法中是一个中心要求,适用于许多情况。特别地,我们提供了多个路径可微的参数示例,并开发相应的估计器和置信区间。在这些示例中,有四个尤其与因果推理社区正在进行的研究相关:反事实密度函数、剂量-反应函数、条件平均治疗效应函数和反事实核均值嵌入。