There are good arguments to support the claim that feature representations eventually transition from general to specific in deep neural networks (DNNs), but this transition remains relatively underexplored. In this work, we move a tiny step towards understanding the transition of feature representations. We first characterize this transition by analyzing the class separation in intermediate layers, and next model the process of class separation as community evolution in dynamic graphs. Then, we introduce modularity, a common metric in graph theory, to quantify the evolution of communities. We find that modularity tends to rise as the layer goes deeper, but descends or reaches a plateau at particular layers. Through an asymptotic analysis, we show that modularity can provide quantitative analysis of the transition of the feature representations. With the insight on feature representations, we demonstrate that modularity can also be used to identify and locate redundant layers in DNNs, which provides theoretical guidance for layer pruning. Based on this inspiring finding, we propose a layer-wise pruning method based on modularity. Further experiments show that our method can prune redundant layers with minimal impact on performance. The codes are available at https://github.com/yaolu-zjut/Dynamic-Graphs-Construction.
翻译:有很好的理由支持这样的主张,即特征表示最终在深神经网络(DNNs)中从一般向具体过渡,但这种过渡仍然相对没有得到充分探讨。在这项工作中,我们向了解特征表示的过渡迈出了很小的一步。我们首先通过分析中间层的等级分离来描述这种过渡,而下一个模型则将阶级分离过程作为动态图形中的社区演化过程来描述这种过渡。然后,我们引入模块性,在图形理论中引入一个通用指标,以量化社区的演化。我们发现模块性随着层的更深而上升,但降级或达到特定层的高原。我们通过无症状分析表明模块性能可以提供特征表示过渡的定量分析。通过对特征表示的深入了解,我们证明模块性也能用来确定和定位DNNUS的冗余层,为层的理论性指导。基于这一鼓舞人心的发现,我们提出了一种基于模块性的、从层角度调整运行的方法。进一步实验表明,我们的方法可以模拟冗余层,对性能产生最小的影响。在 http://githus/gruction-gruction./Graction-struction-yaologyusmusmusmusmus。