In modern networking research, infrastructure-assisted unmanned autonomous vehicles (UAVs) are actively considered for real-time learning-based surveillance and aerial data-delivery under unexpected 3D free mobility and coordination. In this system model, it is essential to consider the power limitation in UAVs and autonomous object recognition (for abnormal behavior detection) deep learning performance in infrastructure/towers. To overcome the power limitation of UAVs, this paper proposes a novel aerial scheduling algorithm between multi-UAVs and multi-towers where the towers conduct wireless power transfer toward UAVs. In addition, to take care of the high-performance learning model training in towers, we also propose a data delivery scheme which makes UAVs deliver the training data to the towers fairly to prevent problems due to data imbalance (e.g., huge computation overhead caused by larger data delivery or overfitting from less data delivery). Therefore, this paper proposes a novel workload-aware scheduling algorithm between multi-towers and multi-UAVs for joint power-charging from towers to their associated UAVs and training data delivery from UAVs to their associated towers. To compute the workload-aware optimal scheduling decisions in each unit time, our solution approach for the given scheduling problem is designed based on Markov decision process (MDP) to deal with (i) time-varying low-complexity computation and (ii) pseudo-polynomial optimality. As shown in performance evaluation results, our proposed algorithm ensures (i) sufficient times for resource exchanges between towers and UAVs, (ii) the most even and uniform data collection during the processes compared to the other algorithms, and (iii) the performance of all towers convergence to optimal levels.


翻译:在现代联网研究中,基础设施辅助无人驾驶自动飞行器(UAVs)被积极考虑用于在意想不到的3D自由移动和协调下进行实时学习式监视和空中数据传输。在这个系统模型中,必须考虑UAVs的动力限制和自动物体识别(异常行为检测)基础设施/塔的深层学习性能。为了克服UAVs的功率限制,本文件提议在多天文飞行器和多塔进行无线电向UAVs传输的多天体之间采用新的航空调度算法。此外,为了在塔上进行高性能学习模型培训,我们还提议了一个数据交付计划,使UAVS向塔提供高性培训模型,从而公平防止数据失衡造成的问题(例如,由于提供较大数据或数据交付量过大而导致的计算间接费用)。 因此,本文提议在多天文飞行器和多天文飞行器之间采用新的工作量算法,以便从塔台到相关的UAVAVs进行无线电算转换,并培训从UAVAVs-tal的高级学习模型提供高性模型模型模型模型模型模型模型模型,,在每次运行上显示业绩交易的进度,在计算过程中进行业绩交易交易,在计算过程中进行所有工作,在计算过程中进行所有工作,在计算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员