In recent years, ridesharing platforms have become a prominent mode of transportation for the residents of urban areas. As a fundamental problem, route recommendation for these platforms is vital for their sustenance. The works done in this direction have recommended routes with higher passenger demand. Despite the existing works, statistics have suggested that these services cause increased greenhouse emissions compared to private vehicles as they roam around in search of riders. This analysis provides finer details regarding the functionality of ridesharing systems and it reveals that in the face of their boom, they have not utilized the vehicle capacity efficiently. We propose to overcome the above limitations and recommend routes that will fetch multiple passengers simultaneously which will result in increased vehicle utilization and thereby decrease the effect of these systems on the environment. As route recommendation is NP-hard, we propose a k-hop-based sliding window approximation algorithm that reduces the search space from entire road network to a window. We further demonstrate that maximizing expected demand is submodular and greedy algorithms can be used to optimize our objective function within a window. We evaluate our proposed model on real-world datasets and experimental results demonstrate superior performance by our proposed model.


翻译:近年来,拼车平台成为城市居民出行的主流方式。其中,路线推荐是一个关键问题。尽管在这一方向上有很多研究都已经提出了推荐具有更高载客需求的路线,但数据显示这些服务和私家车相比会导致更高的温室气体排放,因为它们在寻找乘客时会不停地漫游。本文提供了关于拼车系统功能的更精细细节,发现在它们的繁荣面前,它们并没有有效地利用车辆容量。因此,本文建议推荐可同时接送多名乘客的路线,从而增加车辆利用率,减少对环境的影响。由于路线推荐问题是NP-hard,因此本文提出了一种基于k-hop滑动窗口近似算法,将搜索空间从整个道路网降至一个窗口内。本文进一步证明期望需求最大化是次模函数,可以使用贪心算法优化我们的目标函数。我们在实际数据集上评估了我们的模型,实验结果表明我们的模型性能卓越。

0
下载
关闭预览

相关内容

贪婪算法是一种算法范式,它遵循问题求解的启发式方法,即在每个阶段做出局部最优选择,以期寻求全局最优。 在许多问题中,贪婪策略通常不会产生最优解,但是贪婪的启发式方法可能会产生局部最优解,该局部最优解在合理的时间内近似于全局最优解。 例如,针对旅行商问题的贪婪策略(具有很高的计算复杂性)如下启发式:“在每个阶段,访问最接近当前城市的未访问城市”。 这种启发式方法无需找到最佳解决方案,而是以合理数量的步骤终止; 寻找最佳解决方案通常需要不合理的许多步骤。 在数学优化中,贪婪算法可解决具有拟阵特性的组合问题
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
64+阅读 · 2022年4月13日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员