Zero-shot learning (ZSL) aims to predict unseen classes whose samples have never appeared during training. One of the most effective and widely used semantic information for zero-shot image classification are attributes which are annotations for class-level visual characteristics. However, the current methods often fail to discriminate those subtle visual distinctions between images due to not only the shortage of fine-grained annotations, but also the attribute imbalance and co-occurrence. In this paper, we present a transformer-based end-to-end ZSL method named DUET, which integrates latent semantic knowledge from the pre-trained language models (PLMs) via a self-supervised multi-modal learning paradigm. Specifically, we (1) developed a cross-modal semantic grounding network to investigate the model's capability of disentangling semantic attributes from the images; (2) applied an attribute-level contrastive learning strategy to further enhance the model's discrimination on fine-grained visual characteristics against the attribute co-occurrence and imbalance; (3) proposed a multi-task learning policy for considering multi-model objectives. We find that our DUET can achieve state-of-the-art performance on three standard ZSL benchmarks and a knowledge graph equipped ZSL benchmark. Its components are effective and its predictions are interpretable.


翻译:零点学习(ZSL)的目的是预测在培训期间从未出现过样本的隐蔽班级。在零点图像分类中,最有效且广泛使用的语义信息之一是作为课堂视觉特征说明的属性。然而,目前的方法往往没有区分图像之间的这些微妙视觉区别,不仅因为缺少细微图解,而且因为属性不平衡和共发现象。在本文中,我们提出了一个基于变压器的终端到终端ZSL方法,名为DUET,它通过自上式多模式学习模式,将预先培训的语言模型(PLMs)的潜在语义学知识整合在一起。具体地说,我们(1) 开发了一个跨模式语义地面网络,调查模型从图像中脱色语义属性的能力;(2) 应用了属性级对比学习战略,以进一步加强模型在精细度视觉特征上对属性共现和失衡的区别;(3) 提出了多任务学习政策,以考虑多模范多模范多模式的多模式多模式的多模式的多模式学习目标。我们发现超模范的SLET是其标准级的Z。

1
下载
关闭预览

相关内容

Duet Game 开发商Kumobius Pty Ltd,更新时间2014年5月2日。
Duet Game的节奏并不复杂,通过不断的重新排列组合,来重新定义关卡的难度。

游戏界面不定时飘来方块,根据音乐的节奏来变换着队形。而玩家需要做的便是,在适当的时机,通过触摸屏幕来巧妙而灵活的躲避下坠的方块。点触屏幕两侧,使方块旋转或扭曲,避开前进道路上的障碍物。即使开头很简单,最后可能很复杂。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月28日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
18+阅读 · 2021年6月10日
Arxiv
17+阅读 · 2021年2月15日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员