We consider a model for predicting the spatio-temporal distribution of a marine species based on zero-inflated count observation data that vary continuously over a specified survey region. The model is a mixture of two components; a one-point distribution at the origin and a Poisson distribution with spatio-temporal intensity, where both intensity and mixing proportions are related to some auxiliary information. We develop an efficient posterior computational algorithm for the model using a data augmentation strategy. An attractive feature of the modeling framework is that it accommodates scenarios where the auxiliary information is partially observed, or when the response variable is observed at spatially varying locations over non-uniform time intervals. We present results to show how utilizing the posterior distribution of the auxiliary information facilitates the successful prediction of future spatio-temporal distributions of an example marine species.
翻译:我们考虑一个模型,根据零膨胀计数观测数据预测海洋物种的时空分布,该模型在特定调查区域中变化不一。该模型由两个部分组成:源头的一点分布和时空强度的Poisson分布,其强度和混合比例都与某些辅助信息相关。我们利用数据增强战略为模型开发一个高效的后部计算算法。模型框架的一个有吸引力的特征是,它包含部分观测辅助信息的情景,或者在不统一的时间间隔下不同空间地点观测响应变量。我们提出结果,说明辅助信息的外部分布如何有助于成功预测海洋物种未来的时空分布。