This paper is concerned with an inverse wave-number-dependent/frequency-dependent source problem for the Helmholtz equation. In d-dimensions (d = 2,3), the unknown source term is supposed to be compactly supported in spatial variables but independent on x_d. The dependance of the source function on k is supposed to be unknown. Based on the Dirichlet-Laplacian method and the Fourier-Transform method, we develop two effcient non-iterative numerical algorithms to recover the wave-number-dependent source. Uniqueness and increasing stability analysis are proved. Numerical experiments are conducted to illustrate the effctiveness and effciency of the proposed method.
翻译:暂无翻译