Precision phenomenological studies of high-multiplicity scattering processes at collider experiments present a substantial theoretical challenge and are vitally important ingredients in experimental measurements. Machine learning technology has the potential to dramatically optimise simulations for complicated final states. We investigate the use of neural networks to approximate matrix elements, studying the case of loop-induced diphoton production through gluon fusion. We train neural network models on one-loop amplitudes from the NJet C++ library and interface them with the Sherpa Monte Carlo event generator to provide the matrix element within a realistic hadronic collider simulation. Computing some standard observables with the models and comparing to conventional techniques, we find excellent agreement in the distributions and a reduced total simulation time by a factor of thirty.
翻译:在对撞实验中,对相撞实验中高多重散射过程进行精密的精密苯球学研究,这在理论上是一个巨大的挑战,是实验测量中至关重要的成份。机器学习技术有可能对复杂的最终状态进行极优化的模拟。我们调查神经网络用于近似矩阵元素的情况,研究通过葡萄聚变循环引发的二磷生产的案例。我们从NJet C+++图书馆对单环振动的神经网络模型进行了培训,并将这些模型与Sherpa Monte Carlo事件生成器接口,以便在现实的低速对撞模拟中提供矩阵元素。用模型计算一些标准观测结果,并与常规技术进行比较,我们发现在分布上达成了极好的一致,并将模拟总时间减少30倍。