Despite various breakthroughs in machine learning and data analysis techniques for improving smart operation and management of urban water infrastructures, some key limitations obstruct this progress. Among these shortcomings, the absence of freely available data due to data privacy or high costs of data gathering and the nonexistence of adequate rare or extreme events in the available data plays a crucial role. Here, Generative Adversarial Networks (GANs) can help overcome these challenges. In machine learning, generative models are a class of methods capable of learning data distribution to generate artificial data. In this study, we developed a GAN model to generate synthetic time series to balance our limited recorded time series data and improve the accuracy of a data-driven model for combined sewer flow prediction. We considered the sewer system of a small town in Germany as the test case. Precipitation and inflow to the storage tanks are used for the Data-Driven model development. The aim is to predict the flow using precipitation data and examine the impact of data augmentation using synthetic data in model performance. Results show that GAN can successfully generate synthetic time series from real data distribution, which helps more accurate peak flow prediction. However, the model without data augmentation works better for dry weather prediction. Therefore, an ensemble model is suggested to combine the advantages of both models.


翻译:尽管在改进城市水基础设施的智能操作和管理的机器学习和数据分析技术方面取得了各种突破,但一些关键的限制因素阻碍了这一进展,其中包括:由于数据隐私或数据收集费用高昂,以及现有数据中不存在适当的稀有或极端事件,缺乏可自由获取的数据,这些缺点具有关键作用。这里,基因反转网络(GANs)可以帮助克服这些挑战。在机器学习中,基因化模型是能够学习数据传播以生成人工数据的一组方法。在本研究中,我们开发了一个GAN模型,以生成合成时间序列,以平衡我们有限记录的时间序列数据,并提高数据驱动模型的准确性,用于综合下水道流量预测。我们认为,德国一个小城镇的下水道系统是试验案例。在数据驱动模型开发过程中,使用热量和流入储油罐的情况可以帮助克服这些挑战。目的是利用降水数据预测流量,并利用模型性能合成数据来审查数据增强的影响。结果显示,GAN模型能够成功地从真实数据分布中生成合成时间序列,从而有助于更精确的峰流预测。但是,我们认为,德国的一个小城镇的下水道系统系统系统系统系统是更好的模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【2022新书】机器学习中的统计建模:概念和应用,398页pdf
专知会员服务
139+阅读 · 2022年11月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
161+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员