《机器学习中的统计建模:概念和应用》介****绍了统计、探索性数据分析和机器学习的基本概念和作用。本文将讨论机器学习的各个方面以及统计的基础知识。通过简单的例子和图形表示来介绍概念,以便更好地理解技术。这本书采取了一个整体的方法-把关键概念与机器学习的多学科应用的深入论述放在一起。讨论了新的案例研究和研究问题陈述,这将帮助研究人员在他们的应用领域基于统计和机器学习的概念。机器学习中的统计建模:概念和应用将帮助统计学家、机器学习从业者和程序员解决各种任务,如分类、回归、聚类、预测、推荐等。
https://www.elsevier.com/books/statistical-modeling-in-machine-learning/goswami/978-0-323-91776-6
通过实际问题、应用和教程的帮助,提供了应用于机器学习的最新统计概念的全面概述 * 介绍了从基本原理到先进技术的逐步方法 * 包括成功和不成功的机器学习应用的案例研究,以理解其实现中的挑战,以及工作的例子
- Introduction to Statistical Modelling in Machine Learning - A Case Study
- A Technique of Data Collection- Web Scraping with Python
- Analysis of Covid-19 using Machine Learning Techniques
- Discriminative Dictionary Learning based on Statistical Methods
- Artificial Intelligence based Uncertainty Quantification technique for External flow CFD simulations
- Music Genres Classification
- Classification Model of Machine Learning for Medical Data Analysis
- Regression Models for Machine learning
- Model Selection and Regularization
- Data Clustering using Unsupervised Machine Learning
- Emotion-based classification through fuzzy entropy enhanced FCM clustering
- Fundamental Optimization Methods for Machine Learning
- Stochastic Optimization of Industrial Grinding Operation through Data-Driven Robust Optimization
- Dimensionality Reduction using PCAs in Feature Partitioning Framework
- Impact of Mid-Day Meal Scheme in Primary Schools in India using Exploratory Data Analysis and Data Visualisation
- Nonlinear System Identification of Environmental pollutants using Recurrent Neural Networks and Global Sensitivity Analysis
- Comparative Study of Automated Deep Learning Techniques for Wind Time Series Forecasting