We present an implicit likelihood approach to quantifying cosmological information over discrete catalogue data, assembled as graphs. To do so, we explore cosmological inference using mock dark matter halo catalogues. We employ Information Maximising Neural Networks (IMNNs) to quantify Fisher information extraction as a function of graph representation. We a) demonstrate the high sensitivity of modular graph structure to the underlying cosmology in the noise-free limit, b) show that networks automatically combine mass and clustering information through comparisons to traditional statistics, c) demonstrate that graph neural networks can still extract information when catalogues are subject to noisy survey cuts, and d) illustrate how nonlinear IMNN summaries can be used as asymptotically optimal compressed statistics for Bayesian implicit likelihood inference. We reduce the area of joint $\Omega_m, \sigma_8$ parameter constraints with small ($\sim$100 object) halo catalogues by a factor of 42 over the two-point correlation function, and demonstrate that the networks automatically combine mass and clustering information. This work utilises a new IMNN implementation over graph data in Jax, which can take advantage of either numerical or auto-differentiability. We also show that graph IMNNs successfully compress simulations far from the fiducial model at which the network is fitted, indicating a promising alternative to $n$-point statistics in catalogue-based analyses.
翻译:我们展示了一种隐含的可能性方法,用离散目录数据量化宇宙信息,以图解形式收集。为此,我们利用模拟暗物质光环目录来探索宇宙推论。我们使用信息最大化神经网络(IMNNS)来量化渔业信息提取,以此作为图形表达法的函数。我们a)展示了模块图形结构对于无噪音限制的内在宇宙学的高度敏感性,b)表明网络通过与传统统计数据的比较,自动将质量信息与集中信息组合起来;c)表明图形神经网络仍然可以在目录受到噪音调查削减时提取信息;d)说明如何使用非线性IMNN摘要,作为巴伊西亚暗隐含可能性推断的最佳压缩统计数据。我们用小的(sim$100天体),将模块图形结构结构结构结构结构与传统的2点相关功能相比,将质量和组合信息自动组合起来。这项工作利用新的IMNNNNE执行模型,用于巴伊暗暗隐含可能性的压缩数据分析,在最有前景的JAx数据库中,可以成功展示了我们数据库中最可靠的数字或最可靠的数字数据。