The ensemble Kalman inversion (EKI) is a particle based method which has been introduced as the application of the ensemble Kalman filter to inverse problems. In practice it has been widely used as derivative-free optimization method in order to estimate unknown parameters from noisy measurement data. For linear forward models the EKI can be viewed as gradient flow preconditioned by a certain sample covariance matrix. Through the preconditioning the resulting scheme remains in a finite dimensional subspace of the original high-dimensional (or even infinite dimensional) parameter space and can be viewed as optimizer restricted to this subspace. For general nonlinear forward models the resulting EKI flow can only be viewed as gradient flow in approximation. In this paper we discuss the effect of applying a sample covariance as preconditioning matrix and quantify the gradient flow structure of the EKI by controlling the approximation error through the spread in the particle system. The ensemble collapse on the one side leads to an accurate gradient approximation, but on the other side to degeneration in the preconditioning sample covariance matrix. In order to ensure convergence as optimization method we derive lower as well as upper bounds on the ensemble collapse. Furthermore, we introduce covariance inflation without breaking the subspace property intending to reduce the collapse rate of the ensemble such that the convergence rate improves. In a numerical experiment we apply EKI to a nonlinear elliptic boundary-value problem and illustrate the dependence of EKI as derivative-free optimizer on the choice of the initial ensemble.


翻译:共振 Kalman 反转 (EKI) 是一种粒子法, 被作为全成 Kalman 过滤器对反问题的应用而采用。 实际上, 它被广泛用作无衍生物的优化优化方法, 以便从噪音测量数据中估算未知参数。 对于线性前方模型, EKI 可以通过控制粒子系统扩散的近差来将 EKI 的梯度流视为由某种样本共变矩阵所先决条件的梯度流。 通过预设, 由此产生的方案仍位于原始高维( 甚至无限维度) 参数空间的有限维度子空间, 并且可被视为限于这一子空间的优化。 对于一般非线性前方模型而言, 由此产生的 EKI 选择流只能被视为近距离的梯度流。 在本文中,我们讨论应用样本共变差作为先决条件, 量化 EKII 的梯度流结构。 通过控制粒子系统扩散的近差差, 使一面的串联性崩溃导致准确的梯度近度近差差, 但另一面则被视为该样变异性矩阵。 为了确保精度的精度的精度方法的精度, 我们的精度递化方法的精度将EKI 递化, 递增的精度递进度递进度递进度, 将EKI 度 度 度 递减率 递减为我们制成成成的磁率 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
M365热招 | N+Offer“职”等你来
微软招聘
0+阅读 · 2021年3月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员