In this paper, we investigate the computational complexity of solutions to the Laplace and the diffusion equation. We show that for a certain class of initial-boundary value problems of the Laplace and the diffusion equation, the solution operator is unbounded as a mapping from the space of polynomial-time computable functions into itself in the sense that there exists polynomial-time (Turing) computable input data such that the solution is not polynomial-time computable, unless $FP=\#P$. In this case, we can, in general, not simulate the solution of the Laplace or the diffusion equation on a digital computer without having a complexity blowup, i.e., the computation time for obtaining an approximation of the solution with up to a finite number of significant digits grows exponentially in the number of digits. This shows that the computational complexity of the solution operator is intrinsically high, independent of the numerical algorithm that is used to obtain a solution. This indicates that there is a fundamental problem in computing a solution on a digital hardware.


翻译:在本文中, 我们调查 Laplace 解决方案的计算复杂性和扩散方程式。 我们显示, 对于 Laplace 和 扩散方程式 的某类初始边界值问题和扩散方程式, 解决方案操作员没有被限制为从多球- 多球- 时间计算函数空间的映射到自己, 也就是说, 存在多球- 计算时( 试算) 可计算输入数据, 使得解决方案不是多球- 时间计算, 除非$FP ⁇ P$。 在这种情况下, 一般来说, 我们无法模拟 Laplace 的解决方案或数字计算机上的扩散方程式, 而没有复杂的爆炸, 也就是说, 计算出一个解决方案的近似时间, 在数字数中, 数量有限的数字数成倍增长。 这表明, 解决方案操作员的计算复杂性本质上很高, 独立于用于获得解决方案的数字算法 。 这说明计算数字硬件的解决方案存在根本性问题 。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On the Entropy of an Exchangeable Graph
Arxiv
0+阅读 · 2023年2月3日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员