The Boolean Satisfiability (SAT) problem stands out as an attractive NP-complete problem in theoretic computer science and plays a central role in a broad spectrum of computing-related applications. Exploiting and tuning SAT solvers under numerous scenarios require massive high-quality industry-level SAT instances, which unfortunately are quite limited in the real world. To address the data insufficiency issue, in this paper, we propose W2SAT, a framework to generate SAT formulas by learning intrinsic structures and properties from given real-world/industrial instances in an implicit fashion. To this end, we introduce a novel SAT representation called Weighted Literal Incidence Graph (WLIG), which exhibits strong representation ability and generalizability against existing counterparts, and can be efficiently generated via a specialized learning-based graph generative model. Decoding from WLIGs into SAT problems is then modeled as finding overlapping cliques with a novel hill-climbing optimization method termed Optimal Weight Coverage (OWC). Experiments demonstrate the superiority of our WLIG-induced approach in terms of graph metrics, efficiency, and scalability in comparison to previous methods. Additionally, we discuss the limitations of graph-based SAT generation for real-world applications, especially when utilizing generated instances for SAT solver parameter-tuning, and pose some potential directions.
翻译:为了解决数据不足问题,本文提出W2SAT框架,通过以隐含的方式学习特定真实世界/工业情况的内在结构和特性来生成SAT公式。为此,我们引入了新型的SAT代表制,称为Weight-Literal Indicence graphication(WLIG),该代表制展示了我们WLIG的诱导性方法的优越性,该方法展示了与现有对应方相比具有很强的代表性和通用性,并且可以通过基于专门学习的图形化变形模型有效生成。为了解决数据不足问题,我们在此文件中提议W2SAT框架,通过隐含的方式学习特定现实世界/工业情况的内在结构和特性来生成SAT公式。为此,我们引入了一种新型的SAT代表制表层结构,在图形化模型化应用方面展示了我们WLIG的诱导性方法的优越性,在利用以往的模型模型模型模型模型模型模型模型应用方面,特别是利用了我们以往的模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型,在我们利用了前的模型模型模型模型模型的模型的模型模型模型模型模型模型模型模型模型模型模型模型模型模型的模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型的模型的模型的模型的模型的模型的模型的模型的模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型的模型的模型的模型的模型的模型的模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型的模型的模型模型模型的模型的模型的模型的模型的模型的模型的模型的模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型模型的模型模型的模型