Model complexity remains a key feature of any proposed data generating mechanism. Measures of complexity can be extended to complex patterns such as signals in time and graphs. In this paper, we are concerned with the well-studied class of exchangeable graphs. Exchangeability for graphs implies a distributional invariance under node permutation and is a suitable default model that can widely be used for network data. For this well-studied class of graphs, we make a choice to quantify model complexity based on the (Shannon) entropy, resulting in graphon entropy. We estimate the entropy of the generating mechanism of a given graph, instead of choosing a specific graph descriptor suitable only for one graph generating mechanism. In this manner, we naturally consider the global properties of a graph and capture its important graph-theoretic and topological properties. Under an increasingly complex set of generating mechanisms, we propose a set of estimators of graphon entropy as measures of complexity for real-world graphs. We determine the large--sample properties of such estimators and discuss their usage for characterizing evolving real-world graphs.
翻译:模型复杂性仍然是任何拟议数据生成机制的一个关键特征。 复杂性的测量方法可以扩展至复杂模式, 如时间和图表中的信号。 在本文中, 我们关注研究周密的可交换图表类别。 图形的可交换性意味着在节点变换下分布变化, 并且是一个适合的默认模型, 可用于网络数据。 对于这一经过广泛研究的图表类别, 我们选择根据( hannon) 映像质, 来量化模型复杂性, 从而生成图形 。 我们估计了特定图形生成机制的增缩性, 而不是选择一个仅适合一个图形生成机制的具体图形描述符。 这样, 我们自然地考虑一个图形的全球属性, 并捕捉其重要的图形- 理论和地形特性。 在一组日益复杂的生成机制下, 我们提出一套图形摄像仪的测算器, 以作为真实世界图形的复杂度尺度。 我们决定了这些测量器的大小缩写特性, 并讨论它们用于改变真实世界的图形的特性。