Using gradient descent (GD) with fixed or decaying step-size is a standard practice in unconstrained optimization problems. However, when the loss function is only locally convex, such a step-size schedule artificially slows GD down as it cannot explore the flat curvature of the loss function. To overcome that issue, we propose to exponentially increase the step-size of the GD algorithm. Under homogeneous assumptions on the loss function, we demonstrate that the iterates of the proposed \emph{exponential step size gradient descent} (EGD) algorithm converge linearly to the optimal solution. Leveraging that optimization insight, we then consider using the EGD algorithm for solving parameter estimation under both regular and non-regular statistical models whose loss function becomes locally convex when the sample size goes to infinity. We demonstrate that the EGD iterates reach the final statistical radius within the true parameter after a logarithmic number of iterations, which is in stark contrast to a \emph{polynomial} number of iterations of the GD algorithm in non-regular statistical models. Therefore, the total computational complexity of the EGD algorithm is \emph{optimal} and exponentially cheaper than that of the GD for solving parameter estimation in non-regular statistical models while being comparable to that of the GD in regular statistical settings. To the best of our knowledge, it resolves a long-standing gap between statistical and algorithmic computational complexities of parameter estimation in non-regular statistical models. Finally, we provide targeted applications of the general theory to several classes of statistical models, including generalized linear models with polynomial link functions and location Gaussian mixture models.


翻译:使用固定或衰变的梯度下降( GD) 是未受限制的优化问题的标准做法 。 但是, 当损失函数只是本地的精度时, 这样的梯度缩进表会人为地减缓 GD, 因为它无法探索损失函数的平坦曲线。 为了克服这一问题, 我们提议指数化地增加 GD 算法的梯度。 在对损失函数的一致假设下, 我们证明, 提议的 \ emph{ 超度梯度梯度下降} (EGD) 算法的反复性会直线地聚集到最佳的解决方案中。 利用这种优化洞察觉, 我们然后考虑使用 EGD 定期的逻辑算法来在常规和非常规的统计模型下解算参数估计参数, 当样本大小变得不精确时, 显示 EGG 的梯度在真实参数中达到最终的统计半值值值。 与 empalalal- colomal adal- explia develrial deal deal deal dal disal disal disal 和在非定期统计模型中的统计模型中, comliversal dal dal dal dal dal commagistration sal disl disl 。 因此, 在统计模型中, 和Slational disl dal disl disl disl disl dal dal dal disald dismldal commldaldaldaldald disaldaldaldaldaldaldald disldaldald disaldald disld 。 因此, 在统计模型中, 在统计模型中, 在统计模型中, 在统计模型中, 在统计模型中, 在统计模型中, 在统计模型中, 在统计模型中, 在统计模型中, 在统计模型中, 在统计模型中, 和GIaldaldalislislislisl 和GIaldal- sal- slational- slislislisal- slislislislislisllislislislislislislisldal- sl

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
69+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
121+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员