The quasi-Newton methods generally provide curvature information by approximating the Hessian using the secant equation. However, the secant equation becomes insipid in approximating the Newton step owing to its use of the first-order derivatives. In this study, we propose an approximate Newton step-based stochastic optimization algorithm for large-scale empirical risk minimization of convex functions with linear convergence rates. Specifically, we compute a partial column Hessian of size ($d\times k$) with $k\ll d$ randomly selected variables, then use the \textit{Nystr\"om method} to better approximate the full Hessian matrix. To further reduce the computational complexity per iteration, we directly compute the update step ($\Delta\boldsymbol{w}$) without computing and storing the full Hessian or its inverse. Furthermore, to address large-scale scenarios in which even computing a partial Hessian may require significant time, we used distribution-preserving (DP) sub-sampling to compute a partial Hessian. The DP sub-sampling generates $p$ sub-samples with similar first and second-order distribution statistics and selects a single sub-sample at each epoch in a round-robin manner to compute the partial Hessian. We integrate our approximated Hessian with stochastic gradient descent and stochastic variance-reduced gradients to solve the logistic regression problem. The numerical experiments show that the proposed approach was able to obtain a better approximation of Newton\textquotesingle s method with performance competitive with the state-of-the-art first-order and the stochastic quasi-Newton methods.


翻译:准Newton 方法一般通过使用松动方程式来近似 Hessian 以随机选择的 $k\ll d美元变量来提供曲线信息。 但是, 松动方程式由于使用一阶衍生物而近似于 Newston 步步步相近。 在这次研究中, 我们提议为大规模实验风险最小化的 convex 函数, 使用线性趋同率, 大约采用 Newton 步相基优化算法。 具体地说, 我们用随机选择的 $k\ll d$ 来计算一个大小部分的 Hessian 柱形( $d\ times k$), 然后再使用\ textitleit{ nystries\'om 方法来更好地接近全牛顿步骤。 为了进一步降低计算复杂性, 我们直接将更新步骤的 Newta\bilentralal- 方法( DP) 和 IMBeral- pal- passia 的亚序方法显示一个更精确的缩缩化方法。

0
下载
关闭预览

相关内容

最新《自动微分》综述教程,71页ppt
专知会员服务
21+阅读 · 2020年11月22日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
tf.GradientTape 详解
TensorFlow
120+阅读 · 2020年2月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
4+阅读 · 2019年5月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
时间序列算法ARIMA介绍
凡人机器学习
5+阅读 · 2017年6月2日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
tf.GradientTape 详解
TensorFlow
120+阅读 · 2020年2月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
4+阅读 · 2019年5月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
时间序列算法ARIMA介绍
凡人机器学习
5+阅读 · 2017年6月2日
Top
微信扫码咨询专知VIP会员