Multifidelity methods are widely used for estimation of quantities of interest (QoIs) in uncertainty quantification using simulation codes of differing costs and accuracies. Many methods approximate numerical-valued statistics that represent only limited information of the QoIs. In this paper, we generalize the ideas in \cite{xu2021bandit} to develop a multifidelity method that approximates the distribution of scalar-valued QoI. Under a linear model hypothesis, we propose an exploration-exploitation strategy to reconstruct the full distribution, not just statistics, of a scalar-valued QoI using samples from a subset of low-fidelity regressors. We derive an informative asymptotic bound for the mean 1-Wasserstein distance between the estimator and the true distribution, and use it to adaptively allocate computational budget for parametric estimation and non-parametric approximation of the probability distribution. Assuming the linear model is correct, we prove that such a procedure is consistent and converges to the optimal policy (and hence optimal computational budget allocation) under an upper bound criterion as the budget goes to infinity. As a corollary, we obtain convergence of the approximated distribution in the mean 1-Wasserstein metric. The major advantages of our approach are that convergence to the full distribution of the output is attained under appropriate assumptions, and that the procedure and implementation require neither a hierarchical model setup, knowledge of cross-model information or correlation, nor \textit{a priori} known model statistics. Numerical experiments are provided in the end to support our theoretical analysis.
翻译:在使用不同成本和理解度的模拟代码来估计不确定度的利害(QoIs)量时,广泛使用多种美化方法(QoIs)。许多方法大致是数字价值统计,仅代表QoIs的有限信息。在本文中,我们以\cite{xu2021bandit} 来概括多种美化方法,以近似标值的QoI的分布。在线性模型假设下,我们提出探索开发战略,以利用低纤维递增器的一组样本来重新全面分发、而不仅仅是统计数据,以模拟估价的QoI。我们得出了一个内容丰富的数字价值统计,但根据一个具有一定深度的直线性模型,而不是根据一个具有一定深度的直线性递数据列表,我们没有根据一个具有一定深度的直线性的标准,而是根据一个具有一定深度的正值的正比值的逻辑,我们从一个已知的正比值推算到一个准确的正比值的逻辑推算法。