In this work, we delve into the nonparametric empirical Bayes theory and approximate the classical Bayes estimator by a truncation of the generalized Laguerre series and then estimate its coefficients by minimizing the prior risk of the estimator. The minimization process yields a system of linear equations the size of which is equal to the truncation level. We focus on the empirical Bayes estimation problem when the mixing distribution, and therefore the prior distribution, has a support on the positive real half-line or a subinterval of it. By investigating several common mixing distributions, we develop a strategy on how to select the parameter of the generalized Laguerre function basis so that our estimator {possesses a finite} variance. We show that our generalized Laguerre empirical Bayes approach is asymptotically optimal in the minimax sense. Finally, our convergence rate is compared and contrasted with {several} results from the literature.
翻译:在这项工作中,我们深入研究非对称经验性贝耶斯理论,通过缩短普遍拉古尔系列的脱轨来接近古典贝耶斯估计器,然后通过尽量减少估计器先前的风险来估计其系数。 最小化过程产生一个线性方程系统, 其大小相当于脱轨水平。 当混合分布, 从而在先前的分布时, 我们集中研究经验性贝亚斯估计问题, 支持其正的正半线或次交错。 通过调查一些共同的混合分布, 我们制定了如何选择普遍拉古尔函数参数的战略, 以便我们的估计器 { 拥有一定的} 差异。 我们显示,我们普遍的拉古尔经验性贝亚斯方法在微量轴感上是同样最佳的。 最后, 我们的趋同率与文献结果的 {细数比较和对比。