Schemas are knowledge structures that can enable one-shot learning. Rodent one-shot learning in a multiple paired association navigation task has been postulated to be schema-dependent. However, the correspondence between schemas and neural implementations remains poorly understood, and a biologically plausible computational model of the rodents learning has not been demonstrated. Here, we compose such an agent from schemas with biologically plausible neural implementations. The agent contains an associative memory that can form one-shot associations between sensory cues and goal coordinates, implemented using a network with either a feedforward layer or a reservoir of recurrently connected neurons whose plastic output weights are governed by a novel 4-factor reward modulated Exploratory Hebbian (EH) rule. Adding an actor-critic allows the agent to succeed even if obstacles prevent direct heading. With the addition of working memory, the rodent behavior is replicated. Temporal-difference learning of a working memory gate enables one-shot learning despite distractors.
翻译:Schemas 是能够进行一次性学习的知识结构。 在多个配对的组合导航任务中, Rodent 单镜头学习被假定为具有化学依赖性。 但是, schemas 和神经实施之间的对应仍然不甚了解, 也没有展示出一种生物上可信的老鼠学习计算模型。 在这里, 我们从 schemas 中构造出这种剂, 具有生物上可信的神经实施功能。 该剂含有一种连锁记忆, 它可以在感官提示和目标坐标之间形成一次性关联。 使用一个网络, 既包括进料向上层, 也包括一个经常连接的神经元库, 这些神经元的塑料输出重量受新型的4- 因素奖励调节的Hebbbian (EH) 规则的制约。 添加一个演员- crictic 允许该剂成功, 即使障碍阻止直接行驶。 添加了工作记忆, 鼠标行为可以复制。 工作记忆门的温度偏差学习使一发光。</s>