Many real world scientific and industrial applications require optimizing multiple competing black-box objectives. When the objectives are expensive-to-evaluate, multi-objective Bayesian optimization (BO) is a popular approach because of its high sample efficiency. However, even with recent methodological advances, most existing multi-objective BO methods perform poorly on search spaces with more than a few dozen parameters and rely on global surrogate models that scale cubically with the number of observations. In this work we propose MORBO, a scalable method for multi-objective BO over high-dimensional search spaces. MORBO identifies diverse globally optimal solutions by performing BO in multiple local regions of the design space in parallel using a coordinated strategy. We show that MORBO significantly advances the state-of-the-art in sample efficiency for several high-dimensional synthetic problems and real world applications, including an optical display design problem and a vehicle design problem with 146 and 222 parameters, respectively. On these problems, where existing BO algorithms fail to scale and perform well, MORBO provides practitioners with order-of-magnitude improvements in sample efficiency over the current approach.


翻译:许多现实世界的科学和工业应用需要优化多种相互竞争的黑盒目标。当目标成本高、需要评估、多目标的贝叶西亚优化(BO)由于抽样效率高而是一种受欢迎的方法。然而,即使最近的方法进步,大多数现有的多目标BO方法在搜索空间上表现不佳,其参数超过几十个,并依赖全球代用模型,这种模型与观测数量成反比。在这项工作中,我们提出了MORBO,这是在高维搜索空间上实现多目标BO的可扩展方法。MORBO通过使用协调战略在设计空间的多个地方同时实施BO,确定了各种不同的全球最佳解决方案。我们表明,MORBO在多个高度合成问题和现实世界应用方面,包括光学显示设计问题和车辆设计问题,分别涉及146和222个参数。在这些问题上,现有的BO的算法无法规模和表现良好。MORBO为从业人员提供了比当前方法在样本效率方面有一定程度的改进。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
0+阅读 · 2022年8月4日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员