Automatic image-based disease severity estimation generally uses discrete (i.e., quantized) severity labels. Annotating discrete labels is often difficult due to the images with ambiguous severity. An easier alternative is to use relative annotation, which compares the severity level between image pairs. By using a learning-to-rank framework with relative annotation, we can train a neural network that estimates rank scores that are relative to severity levels. However, the relative annotation for all possible pairs is prohibitive, and therefore, appropriate sample pair selection is mandatory. This paper proposes a deep Bayesian active-learning-to-rank, which trains a Bayesian convolutional neural network while automatically selecting appropriate pairs for relative annotation. We confirmed the efficiency of the proposed method through experiments on endoscopic images of ulcerative colitis. In addition, we confirmed that our method is useful even with the severe class imbalance because of its ability to select samples from minor classes automatically.
翻译:基于图像的自动疾病严重程度估计通常使用离散(即量化的)严重程度标签。 由于图像性质模糊,批注离散标签往往很困难。 比较容易的替代办法是使用相对注解, 比较图像配对的严重程度。 通过使用相对注解的从上到下的框架, 我们可以训练一个神经网络, 估计与严重程度相对的分数。 但是, 所有可能配对的相对注解是令人望而却步的, 因此, 适当的样本配对选择是强制性的。 本文提出一个深贝耶斯积极学习到层的深度, 用于培训巴耶斯共生神经网络, 同时自动选择合适的配对进行相对注解。 我们确认拟议方法的效率, 其方法是通过对胃结裂性结膜镜进行实验。 此外, 我们确认, 我们的方法是有用的, 即使由于能够自动从小类中选择样本, 也存在严重的阶级不平衡现象。