There are many issues that can cause problems when attempting to infer model parameters from data. Data and models are both imperfect, and as such there are multiple scenarios in which standard methods of inference will lead to misleading conclusions; corrupted data, models which are only representative of subsets of the data, or multiple regions in which the model is best fit using different parameters. Methods exist for the exclusion of some anomalous types of data, but in practice, data cleaning is often undertaken by hand before attempting to fit models to data. In this work, we will introduce the concept of Bayesian data selection; the simultaneous inference of both model parameters, and parameters which represent our belief that each observation within the data should be included in the inference. The aim, within a Bayesian setting, is to find the regions of observation space for which the model can well-represent the data, and to find the corresponding model parameters for those regions. A number of approaches will be explored, and applied to test problems in linear regression, and to the problem of fitting an ODE model, approximated by a finite difference method, to data. The approaches are extremely simple to implement, can aid mixing of Markov chains designed to sample from the arising densities, and are very broadly applicable to the majority of inferential problems. As such this approach has the potential to change the way that we conduct and interpret the fitting of models to data.


翻译:在试图从数据中推断模型参数时,有许多问题可能会引起问题。数据和模型都是不完善的,因此存在多种假设情况,其中标准推理方法将导致得出误导性结论;腐败数据,只代表数据子集的模型,或模型最适合使用不同参数的多个区域;存在排除某些异常数据类型的方法,但在实践中,数据清理往往是在试图使模型与数据相适应之前手工进行的。在这项工作中,我们将引入巴耶西亚数据选择的概念;同时推论两个模型参数和参数,表明我们认为数据中的每一项观测都应包括在推断中。在巴耶西亚环境下,目的是找到模型能够很好地提供数据的观测空间区域,并为这些地区找到相应的模型参数。将探讨若干方法,并应用到测试线性回归问题,以及适应以有限差异方法比较的ODE模型的问题;同时推论,我们认为,数据中的每一项观测参数都应包含在推断中;在巴耶西亚环境中,找到模型能够很好地展示的观测空间区域,并找到相应的模型参数。我们从最简单的方式将数据转换成一个模型。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员