We describe a novel attribution method which is grounded in Sensitivity Analysis and uses Sobol indices. Beyond modeling the individual contributions of image regions, Sobol indices provide an efficient way to capture higher-order interactions between image regions and their contributions to a neural network's prediction through the lens of variance. We describe an approach that makes the computation of these indices efficient for high-dimensional problems by using perturbation masks coupled with efficient estimators to handle the high dimensionality of images. Importantly, we show that the proposed method leads to favorable scores on standard benchmarks for vision (and language models) while drastically reducing the computing time compared to other black-box methods -- even surpassing the accuracy of state-of-the-art white-box methods which require access to internal representations. Our code is freely available: https://github.com/fel-thomas/Sobol-Attribution-Method
翻译:我们描述一种基于敏感度分析和使用Sobol指数的新归因方法。除了对图像区域的个人贡献进行建模外,Sobol指数为通过差异透视镜捕捉图像区域之间更高层次的相互作用及其通过神经网络预测做出的贡献提供了一个有效的方法。我们描述一种方法,通过使用扰动面罩和高效的估测器来处理图像的高度维度,使这些指数的计算对高维问题有效。重要的是,我们显示,拟议方法导致在视觉标准基准(和语言模型)上获得优异的分数,同时大大缩短与其他黑盒方法相比的计算时间 -- -- 甚至超过了需要内部陈述的先进白箱方法的准确性。我们的代码可以免费查阅:https://github.com/fel-thomas/Sobol-Atriprition-Method。