Recently, Visual Question Answering (VQA) has emerged as one of the most significant tasks in multimodal learning as it requires understanding both visual and textual modalities. Existing methods mainly rely on extracting image and question features to learn their joint feature embedding via multimodal fusion or attention mechanism. Some recent studies utilize external VQA-independent models to detect candidate entities or attributes in images, which serve as semantic knowledge complementary to the VQA task. However, these candidate entities or attributes might be unrelated to the VQA task and have limited semantic capacities. To better utilize semantic knowledge in images, we propose a novel framework to learn visual relation facts for VQA. Specifically, we build up a Relation-VQA (R-VQA) dataset based on the Visual Genome dataset via a semantic similarity module, in which each data consists of an image, a corresponding question, a correct answer and a supporting relation fact. A well-defined relation detector is then adopted to predict visual question-related relation facts. We further propose a multi-step attention model composed of visual attention and semantic attention sequentially to extract related visual knowledge and semantic knowledge. We conduct comprehensive experiments on the two benchmark datasets, demonstrating that our model achieves state-of-the-art performance and verifying the benefit of considering visual relation facts.
翻译:最近,视觉问题解答(VQA)已成为多式联运学习中最重要的任务之一,因为它需要理解视觉和文字模式。现有方法主要依靠提取图像和问题特征,以学习通过多式联运聚合或关注机制嵌入的共同特征。最近的一些研究利用外部VQA独立模型来检测图像中的候选实体或属性,这些模型可以补充VQA的任务的语义知识。然而,这些候选实体或属性可能与VQA的任务无关,其语义能力也有限。为了更好地利用图像中的语义知识,我们提出了一个新的框架,以学习VQA的视觉关系事实。具体地说,我们通过一个语义相似的模块,在视觉基因组数据集的基础上,建立一个Relation-VQA(R-VQA)数据集,其中每个数据包含图像、相应的问题、正确的答案和支持关系。然后采用一个定义明确的关系探测器来预测视觉问题相关事实。我们进一步提议一个多步调关注模型,由视觉关注和视觉关系事实的视觉-VQA(R-VQA)来建立视觉-视觉-视觉实验,并连续地验证我们关于视觉知识的视觉实验。