Algorithm selection wizards are effective and versatile tools that automatically select an optimization algorithm given high-level information about the problem and available computational resources, such as number and type of decision variables, maximal number of evaluations, possibility to parallelize evaluations, etc. State-of-the-art algorithm selection wizards are complex and difficult to improve. We propose in this work the use of automated configuration methods for improving their performance by finding better configurations of the algorithms that compose them. In particular, we use elitist iterated racing (irace) to find CMA configurations for specific artificial benchmarks that replace the hand-crafted CMA configurations currently used in the NGOpt wizard provided by the Nevergrad platform. We discuss in detail the setup of irace for the purpose of generating configurations that work well over the diverse set of problem instances within each benchmark. Our approach improves the performance of the NGOpt wizard, even on benchmark suites that were not part of the tuning by irace.
翻译:算法选择向导是有效、多用途的工具,根据关于问题和现有计算资源的高层次信息,自动选择优化算法,如决定变量的数量和类型、最大评价数量、平行评价的可能性等。 最先进的算法选择向导复杂且难以改进。 我们在此工作中建议使用自动配置方法,通过寻找组成它们的各种算法的更好的配置来改善其性能。 特别是,我们使用精巧的迭接赛( irace) 来寻找具体的人造基准的CMA配置, 以取代目前由Nevergrad平台提供的非政府组织精密向导中所用的手制的CMA配置。 我们详细讨论设置iROE, 目的是为每个基准范围内的多种问题案例产生效果。 我们的方法提高了非政府组织应用向导法的性能, 甚至是在非由 irace 调整的基准套件上的性能。