Discovering new intents is of great significance to establishing Bootstrapped Task-Oriented Dialogue System. Most existing methods either lack the ability to transfer prior knowledge in the known intent data or fall into the dilemma of forgetting prior knowledge in the follow-up. More importantly, these methods do not deeply explore the intrinsic structure of unlabeled data, so they can not seek out the characteristics that make an intent in general. In this paper, starting from the intuition that discovering intents could be beneficial to the identification of the known intents, we propose a probabilistic framework for discovering intents where intent assignments are treated as latent variables. We adopt Expectation Maximization framework for optimization. Specifically, In E-step, we conduct discovering intents and explore the intrinsic structure of unlabeled data by the posterior of intent assignments. In M-step, we alleviate the forgetting of prior knowledge transferred from known intents by optimizing the discrimination of labeled data. Extensive experiments conducted in three challenging real-world datasets demonstrate our method can achieve substantial improvements.
翻译:发现新的意图对于建立受托任务导向对话系统非常重要。大多数现有方法要么缺乏在已知意图数据中转让先前知识的能力,要么陷入忘记先前知识的两难境地。更重要的是,这些方法没有深入探索未贴标签数据固有的结构,因此无法找出一般意图的特征。在本文中,从发现意图可能有助于确定已知意图的直觉出发,我们提出了一个发现意图被作为潜在变量处理的意图的概率框架。我们采用了期望最大化框架以优化。具体来说,在电子步骤中,我们发现意图,并探索未贴标签数据由意向任务后端的内在结构。在M步骤中,我们通过优化标签数据的歧视,减轻对从已知意图转移的先前知识的遗忘。在三个挑战性真实世界数据集中进行的广泛实验表明,我们的方法可以实现实质性的改进。