The field of quantum machine learning (QML) explores how quantum computers can be used to more efficiently solve machine learning problems. As an application of hybrid quantum-classical algorithms, it promises a potential quantum advantages in the near term. In this thesis, we use the ZXW-calculus to diagrammatically analyse two key problems that QML applications face. First, we discuss algorithms to compute gradients on quantum hardware that are needed to perform gradient-based optimisation for QML. Concretely, we give new diagrammatic proofs of the common 2- and 4-term parameter shift rules used in the literature. Additionally, we derive a novel, generalised parameter shift rule with 2n terms that is applicable to gates that can be represented with n parametrised spiders in the ZXW-calculus. Furthermore, to the best of our knowledge, we give the first proof of a conjecture by Anselmetti et al. by proving a no-go theorem ruling out more efficient alternatives to the 4-term shift rule. Secondly, we analyse the gradient landscape of quantum ans\"atze for barren plateaus using both empirical and analytical techniques. Concretely, we develop a tool that automatically calculates the variance of gradients and use it to detect likely barren plateaus in commonly used quantum ans\"atze. Furthermore, we formally prove the existence or absence of barren plateaus for a selection of ans\"atze using diagrammatic techniques from the ZXW-calculus.


翻译:量子机器学习领域( QML) 探索量子计算机如何能更有效地使用来解决机器学习问题。 作为混合量子古典算法的应用, 它有望在近期内带来潜在的量子优势。 在这个论文中, 我们使用 ZXW 计算法来用图表分析QML应用所面临的两个关键问题。 首先, 我们讨论算法来计算量子硬件上的梯度, 这对于为 QML 进行基于梯度的优化是必要的。 具体地说, 我们给出了文献中使用的2 和 4 期参数转换规则的新的图表证据。 此外, 我们用2n 术语来产生新的、 通用参数转换规则, 适用于ZXW 计算过程中的顶点蜘蛛。 此外, 根据我们的知识, 我们首先用算法来证明安塞尔梅蒂等人等人等人等人对量子硬件进行精度。 具体地说, 我们用4- 期转换规则的更高效的替代方法。 第二, 我们用2n 术语来分析一个新通用的参数转换规则的值参数转换规则的值变化规则。 我们用在 水平的梯值结构中, 分析一个我们用一个常规的 解的 和 水平 来测定的, 解 的 的 的 的 的 的 解算算法,, 一种我们用一个常规 的 的 的 的 的 的 的 的 的 的 的 的 的 解的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 解算为 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 解的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 解的 的 的

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月30日
Arxiv
0+阅读 · 2022年11月30日
Arxiv
0+阅读 · 2022年11月29日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员