In solving multi-modal, multi-objective optimization problems (MMOPs), the objective is not only to find a good representation of the Pareto-optimal front (PF) in the objective space but also to find all equivalent Pareto-optimal subsets (PSS) in the variable space. Such problems are practically relevant when a decision maker (DM) is interested in identifying alternative designs with similar performance. There has been significant research interest in recent years to develop efficient algorithms to deal with MMOPs. However, the existing algorithms still require prohibitive number of function evaluations (often in several thousands) to deal with problems involving as low as two objectives and two variables. The algorithms are typically embedded with sophisticated, customized mechanisms that require additional parameters to manage the diversity and convergence in the variable and the objective spaces. In this letter, we introduce a steady-state evolutionary algorithm for solving MMOPs, with a simple design and no additional userdefined parameters that need tuning compared to a standard EA. We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations. The performance of the proposed algorithm is compared with six state-of-the-art algorithms (MO Ring PSO SCD, DN-NSGAII, TriMOEA-TA&R, CPDEA, MMOEA/DC and MMEA-WI). The proposed algorithm exhibits significantly better performance than the above algorithms based on the established metrics including IGDX, PSP and IGD. We hope this study would encourage design of simple, efficient and generalized algorithms to improve its uptake for practical applications.
翻译:在解决多模式、多目标优化问题(MMOPs)时,目标不仅在于找到目标空间中Pareto-最优化前端(PF)的良好代表性,而且在于找到变量空间中所有等效Pareto-最优化子集(PSS),当决策者(DM)有兴趣确定具有类似性能的替代设计时,这些问题实际上具有相关性。近年来,研究对制定高效算法以处理MMOP(MMOs)有很大的兴趣。然而,现有的算法仍然需要数量过高的功能评价(通常有数千个),以处理与两个目标和两个变量一样低的问题。 算法通常包含复杂和定制的机制,需要更多参数来管理变量和客观空间的多样性和趋同。 在这封信中,我们引入了一种稳定状态的演算法,其设计简便,且没有额外的用户定义参数,需要与标准EA(W)相比,我们报告其21个基于各种测试套的通用 MMOPMSO(通常有数千个)的性能,这比RA-MA-MA(MIS-MA-MA-MA-MA-MA)的低级算算算算算算法和SAL-SAL-MA-MA-MASAL-DA的6级算算算法要大大比SAL-SAL-SAL-SAL-SA-SAL-SA-SAL-SA-SA-SA-SA-MA-SA-SA-SAL-SA的改进。