We introduce a novel framework for implementing error-correction in constrained systems. The main idea of our scheme, called Quantized-Constraint Concatenation (QCC), is to employ a process of embedding the codewords of an error-correcting code in a constrained system as a (noisy, irreversible) quantization process. This is in contrast to traditional methods, such as concatenation and reverse concatenation, where the encoding into the constrained system is reversible. The possible number of channel errors QCC is capable of correcting is linear in the block length $n$, improving upon the $O(\sqrt{n})$ possible with the state-of-the-art known schemes. For a given constrained system, the performance of QCC depends on a new fundamental parameter of the constrained system - its covering radius. Motivated by QCC, we study the covering radius of constrained systems in both combinatorial and probabilistic settings. We reveal an intriguing characterization of the covering radius of a constrained system using ergodic theory. We use this equivalent characterization in order to establish efficiently computable upper bounds on the covering radius.
翻译:我们引入了在限制系统中实施错误校正的新框架。 我们计划的主要理念是将错误校正代码的编码词嵌入限制系统中,作为( noisy, 不可逆) 量度过程。 这与传统方法不同, 比如连接和反向连接, 将编码输入限制系统是可逆的。 频道误差的可能数量能够纠正的是区块长度$( $) 的线性, 改进$O( sqrt{n} ) 与已知的状态计划。 对于给定的限制系统, QCC的性能取决于约束系统的新的基本参数 - 其覆盖范围。 我们受 QCC 驱动, 我们研究了在组合和概率性环境下的受限系统覆盖范围。 我们发现对限制系统半径的描述是线性, 使用ERgodidic 理论来改进 。 我们使用这一等值的半径谱性来建立顶部的配置 。