Symbol-pair codes were proposed for the application in high density storage systems, where it is not possible to read individual symbols. Yaakobi, Bruck and Siegel proved that the minimum pair-distance of binary linear cyclic codes satisfies $d_2 \geq \lceil 3d_H/2 \rceil$ and introduced $b$-symbol metric codes in 2016. In this paper covering codes in $b$-symbol metrics are considered. Some examples are given to show that the Delsarte bound and the Norse bound for covering codes in the Hamming metric are not true for covering codes in the pair metric. We give the redundancy bound on covering radius of linear codes in the $b$-symbol metric and give some optimal codes attaining this bound. Then we prove that there is no perfect linear symbol-pair code with the minimum pair distance $7$ and there is no perfect $b$-symbol metric code if $b\geq \frac{n+1}{2}$. Moreover a lot of cyclic and algebraic-geometric codes are proved non-perfect in the $b$-symbol metric. The covering radius of the Reed-Solomon code in the $b$-symbol metric is determined. As an application the generalized Singleton bound on the sizes of list-decodable $b$-symbol metric codes is also presented. Then an upper bound on lengths of general MDS symbol-pair codes is proved.


翻译:本文考虑了覆盖半径 $b$ 的符号对度量编码问题,其中符号对码最小距离满足 $d_2 \geq \lceil 3d_H/2 \rceil$,其用于高密度存储系统中,其中无法读取单个符号。Yaakobi、Bruck和Siegel在2016年证明了二元线性循环码的最小距离满足 $d_2 \geq \lceil 3d_H/2 \rceil$,并引入了 $b$-符号度量编码。给出了一些例子,表明汉明度量下的覆盖码的Delsarte界和Norse界在符号对距离下不成立。我们给出了 $b$-符号度量线性码的覆盖半径冗余界,并给出了一些能够实现此界限的最优编码。然后证明了如果符号对码最小距离为 $7$,则不存在完美线性符号对代码,如果 $b \geq \frac{n+1}{2}$,则不存在完美的 $b$-符号度量编码。此外,还证明了许多循环和代数几何码在 $b$-符号度量下不是完美的。确定了Reed-Solomon码在 $b$-符号度量下的覆盖半径。作为应用,还介绍了可列举的 $b$-符号度量编码大小的广义Singleton界。然后证明了一般MDS符号对码长度的上限。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员