We consider the problem of identification of linear dynamical systems from a single trajectory. Recent results have predominantly focused on the setup where no structural assumption is made on the system matrix $A^* \in \mathbb{R}^{n \times n}$, and have consequently analyzed the ordinary least squares (OLS) estimator in detail. We assume prior structural information on $A^*$ is available, which can be captured in the form of a convex set $\mathcal{K}$ containing $A^*$. For the solution of the ensuing constrained least squares estimator, we derive non-asymptotic error bounds in the Frobenius norm which depend on the local size of the tangent cone of $\mathcal{K}$ at $A^*$. To illustrate the usefulness of this result, we instantiate it for the settings where, (i) $\mathcal{K}$ is a $d$ dimensional subspace of $\mathbb{R}^{n \times n}$, or (ii) $A^*$ is $k$-sparse and $\mathcal{K}$ is a suitably scaled $\ell_1$ ball. In the regimes where $d, k \ll n^2$, our bounds improve upon those obtained from the OLS estimator.
翻译:本文考虑从单个轨迹中进行线性动力学系统的识别问题。最近的研究主要集中在没有对系统矩阵 $A^* \in \mathbb{R}^{n \times n}$ 进行结构假设的情况下,因此详细分析了普通最小二乘(OLS)估计器。我们假设$A^*$的先前结构信息是可用的,它可以以凸集$\mathcal{K}$的形式来捕捉。对于所得到的带约束的最小二乘估计器的解,我们推导出在Frobenius范数下的非渐进误差界,该误差界取决于$A^*$处$\mathcal{K}$的正切锥的局部大小。为了说明这个结果的有用性,我们将其实例化为以下两种情况:(i) $\mathcal{K}$是$\mathbb{R}^{n \times n}$中的$d$维子空间;(ii) $A^*$是$k$-稀疏的,且$\mathcal{K}$是适当缩放的$\ell_1$球体。在$d,k\ll n^2$的范围内,我们的误差界比OLS估计器得到的误差界有所改进。