In simulation sciences, it is desirable to capture the real-world problem features as accurately as possible. Methods popular for scientific simulations such as the finite element method (FEM) and finite volume method (FVM) use piecewise polynomials to approximate various characteristics of a problem, such as the concentration profile and the temperature distribution across the domain. Polynomials are prone to creating artifacts such as Gibbs oscillations while capturing a complex profile. An efficient and accurate approach must be applied to deal with such inconsistencies in order to obtain accurate simulations. This often entails dealing with negative values for the concentration of chemicals, exceeding a percentage value over 100, and other such problems. We consider these inconsistencies in the context of partial differential equations (PDEs). We propose an innovative filter based on convex optimization to deal with the inconsistencies observed in polynomial-based simulations. In two or three spatial dimensions, additional complexities are involved in solving the problems related to structure preservation. We present the construction and application of a structure-preserving filter with a focus on multidimensional PDEs. Methods used such as the Barycentric interpolation for polynomial evaluation at arbitrary points in the domain and an optimized root-finder to identify points of interest improve the filter efficiency, usability, and robustness. Lastly, we present numerical experiments in 2D and 3D using discontinuous Galerkin formulation and demonstrate the filter's efficacy to preserve the desired structure. As a real-world application, implementation of the mathematical biology model involving platelet aggregation and blood coagulation has been reviewed and the issues around FEM implementation of the model are resolved by applying the proposed structure-preserving filter.


翻译:在模拟科学中,尽可能准确地捕捉真实世界问题的特征是可取的。科学模拟中流行的方法,如有限元法(FEM)和有限体积法(FVM),使用分段多项式来近似问题的各种特征,如领域内的浓度分布和温度分布。多项式容易产生吉布斯振荡等人为现象,同时捕捉复杂的分布。针对这些不一致性,必须应用高效而准确的方法以获得准确的模拟。这经常涉及到处理化学物质浓度的负值、超过100%的百分比值和其他类似问题。我们在偏微分方程(PDE)的背景下考虑这些不一致性。我们提出了一种基于凸优化的创新滤波器来处理基于多项式的模拟中观察到的不一致性。在解决与结构保持相关的问题时,二维或三维中涉及其他复杂性。我们重点介绍多维PDE的结构保持滤波器的构建和应用。所使用的方法,如巴心插值(Barycentric interpolation)实现领域内任意点处的多项式评估,以及优化的根查找程序识别感兴趣的点,提高了过滤器的效率、易用性和鲁棒性。最后,我们在使用间断Galerkin公式的2D和3D数值实验中展示了滤波器保持所需结构的功效。作为一个实际应用,对包括血小板聚集和血液凝固的数学生物学模型的实现进行了审查,并通过应用所提出的结构保持滤波器解决了FEM实现模型时出现的问题。

0
下载
关闭预览

相关内容

【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
75+阅读 · 2022年4月15日
AAAI 2022 | 正交图神经网络
图与推荐
1+阅读 · 2022年11月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月15日
VIP会员
相关VIP内容
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
75+阅读 · 2022年4月15日
相关资讯
AAAI 2022 | 正交图神经网络
图与推荐
1+阅读 · 2022年11月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员