In this paper, we address Novel Class Discovery (NCD), the task of unveiling new classes in a set of unlabeled samples given a labeled dataset with known classes. We exploit the peculiarities of NCD to build a new framework, named Neighborhood Contrastive Learning (NCL), to learn discriminative representations that are important to clustering performance. Our contribution is twofold. First, we find that a feature extractor trained on the labeled set generates representations in which a generic query sample and its neighbors are likely to share the same class. We exploit this observation to retrieve and aggregate pseudo-positive pairs with contrastive learning, thus encouraging the model to learn more discriminative representations. Second, we notice that most of the instances are easily discriminated by the network, contributing less to the contrastive loss. To overcome this issue, we propose to generate hard negatives by mixing labeled and unlabeled samples in the feature space. We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin (e.g., clustering accuracy +13% on CIFAR-100 and +8% on ImageNet).


翻译:在本文中,我们探讨了新分类发现(NCD),这是在一组未贴标签的样本中揭发新类别的任务,该类样本带有标签的已知类别。我们利用NCD的特殊性来建立一个新的框架,名为邻里竞争学习(NCL),学习对集群性能很重要的歧视性表现。我们的贡献是双重的。首先,我们发现在标签集上受过训练的特征提取器会产生一种表示器,其中通用查询样本及其邻居有可能与同一类。我们利用这一观察来检索和汇总具有对比性学习的假阳性配对,从而鼓励模型学习更具歧视性的表达方式。第二,我们注意到大多数情况很容易受到网络的歧视,对对比性损失的贡献较少。为了克服这一问题,我们提议通过在特征空间混合标签和无标签的样本产生硬负作用。我们实验性地证明,这两种因素对聚合性能有重大贡献,并导致我们的模型以大幅度(例如,集成精度+13%的图像-FAR-100和图像-100+%上)超越了常规方法。

1
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
77+阅读 · 2020年6月11日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年8月19日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
7+阅读 · 2020年8月7日
Contrastive Representation Distillation
Arxiv
5+阅读 · 2019年10月23日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
1+阅读 · 2021年8月19日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
7+阅读 · 2020年8月7日
Contrastive Representation Distillation
Arxiv
5+阅读 · 2019年10月23日
Top
微信扫码咨询专知VIP会员