We present a recurrent network for the 3D reconstruction of neurons that sequentially generates binary masks for every object in an image with spatio-temporal consistency. Our network models consistency in two parts: (i) local, which allows exploring non-occluding and temporally-adjacent object relationships with bi-directional recurrence. (ii) non-local, which allows exploring long-range object relationships in the temporal domain with skip connections. Our proposed network is end-to-end trainable from an input image to a sequence of object masks, and, compared to methods relying on object boundaries, its output does not require post-processing. We evaluate our method on three benchmarks for neuron segmentation and achieved state-of-the-art performance on the SNEMI3D challenge.
翻译:我们为3D神经元重建提供了一个经常性的网络,它依次为每个物体在带有时空一致性的图像中产生双面面面罩。我们的网络在两个部分中建模一致性:(一) 本地,它允许探索与双向复发无观测和时间相近的物体关系。 (二) 非本地,它允许探索时域的长距离物体关系,并跳过连接。我们提议的网络是从输入图像到物体面罩序列的端对端训练,与依赖对象边界的方法相比,其输出不需要后处理。我们评估了我们关于神经分解的三个基准的方法,并实现了SNEMI3D挑战方面的最先进的表现。