We present an end-to-end method for the task of panoptic segmentation. The method makes instance segmentation and semantic segmentation predictions in a single network, and combines these outputs using heuristics to create a single panoptic segmentation output. The architecture consists of a ResNet-50 feature extractor shared by the semantic segmentation and instance segmentation branch. For instance segmentation, a Mask R-CNN type of architecture is used, while the semantic segmentation branch is augmented with a Pyramid Pooling Module. Results for this method are submitted to the COCO and Mapillary Joint Recognition Challenge 2018. Our approach achieves a PQ score of 17.6 on the Mapillary Vistas validation set and 27.2 on the COCO test-dev set.
翻译:我们为光学分离任务提出了一个端到端的方法。该方法在单一网络中进行例分解和语义分解预测,并将这些产出结合到一个网络中,使用超光度学来创建单一光学分解输出。该结构由语义分解和例分解分支共享的ResNet-50地物提取器组成。例如,分解,使用面罩 R-CNN 型结构,而语义分解分支则用金字形集合模块加以扩大。该方法的结果已提交COCO和Mably 联合承认挑战2018年。我们的方法在毛里维斯塔斯验证集和COCOCO测试-dev集中取得了17.6的PQ分和27.2的PQ分。