We present a new implementation of the geometric method of Cullen & Purser (1984) for solving the semi-geostrophic Eady slice equations which model large scale atmospheric flows and frontogenesis. The geometric method is a Lagrangian discretisation, where the PDE is approximated by a particle system. An important property of the discretisation is that it is energy conserving. We restate the geometric method in the language of semi-discrete optimal transport theory and exploit this to develop a fast implementation that combines the latest results from numerical optimal transport theory with a novel adaptive time-stepping scheme. Our results enable a controlled comparison between the Eady-Boussinesq vertical slice equations and their semi-geostrophic approximation. We provide further evidence that weak solutions of the Eady-Boussinesq vertical slice equations converge to weak solutions of the semi-geostrophic Eady slice equations as the Rossby number tends to zero.
翻译:我们展示了Cullen & Purser(1984年)几何方法的新实施情况,用于解决模拟大规模大气流动和前方起源的半地球营养粒子方程式。几何方法是一种拉格朗离异法,PDE近似于一个粒子系统。离异的一个重要特性是节能。我们用半分化最佳运输理论的语言重申了几何方法,并利用这种方法发展一种快速实施法,将数字最佳运输理论的最新结果与新的适应性时间步调计划结合起来。我们的结果使得Eady-Boussineq垂直切片方程式及其半地球营养近距离之间能够进行有控制的比较。我们提供了进一步的证据,证明Eady-Boussineq垂直切片方程式的薄弱解决方案与半地球营养粒子方程式的薄弱解决方案汇合在一起,因为罗斯比数字趋向于零。