The iterative problem of solving nonlinear equations is studied. A new Newton like iterative method with adjustable parameters is designed based on the dynamic system theory. In order to avoid the derivative function in the iterative scheme, the difference quotient is used instead of the derivative. Different from the existing methods, the difference quotient scheme in this paper has higher accuracy. Thus, the new iterative method is suitable for a wider range of initial values. Finally, several numerical examples are given to verify the practicability and superiority of the method.
翻译:正在研究解决非线性方程式的迭代问题。 一个新的牛顿(Newton)方法,如具有可调整参数的迭代方法,是根据动态系统理论设计的。 为避免迭代系统中的衍生函数,使用差价而不是衍生函数。 不同于现有方法,本文件中的差价法具有更高的准确性。 因此, 新的迭代方法适合范围更广的初始值。 最后, 提供了几个数字例子来验证该方法的可行性和优越性。