Side information is being used extensively to improve the effectiveness of sequential recommendation models. It is said to help capture the transition patterns among items. Most previous work on sequential recommendation that uses side information models item IDs and side information separately, which may fail to fully model the relation between the items and their side information. Moreover, in real-world systems, not all values of item feature fields are available. This hurts the performance of models that rely on side information. Existing methods tend to neglect the context of missing item feature fields, and fill them with generic or special values, e.g., unknown, which might lead to sub-optimal performance. To address the limitation of sequential recommenders with side information, we define a way to fuse side information and alleviate the problem of missing side information by proposing a unified task, namely the missing information imputation (MII), which randomly masks some feature fields in a given sequence of items, including item IDs, and then forces a predictive model to recover them. By considering the next item as a missing feature field, sequential recommendation can be formulated as a special case of MII. We propose a sequential recommendation model, called missing information imputation recommender (MIIR), that builds on the idea of MII and simultaneously imputes missing item feature values and predicts the next item. We devise a dense fusion self-attention (DFSA) mechanism for MIIR to capture all pairwise relations between items and their side information. Empirical studies on three benchmark datasets demonstrate that MIIR, supervised by MII, achieves a significantly better sequential recommendation performance than state-of-the-art baselines.


翻译:目前广泛使用侧边信息来提高顺序建议模式的效力。据说,它有助于捕捉各个项目之间的过渡模式。大多数先前关于顺序建议的工作,分别使用侧边信息模型项目ID和侧信息,可能无法完全模拟项目与其侧信息之间的关系。此外,在现实世界系统中,并非所有项目特性字段的值都可用。这伤害了依赖侧信息的模式的性能。现有方法往往忽视缺失的项目特性字段的背景,并填充这些功能字段的通用或特殊值,例如未知值,这可能导致次优性业绩。为了解决使用侧信息处理顺序建议者的局限性,我们定义了连接侧信息的方法,并通过提出统一的任务,即缺少信息估算(MII),它随机掩盖了某个特定项目序列中的某些功能字段,包括项目捕获标识,然后迫使一个预测模型来恢复这些功能。如果将下一个项目视为缺失的特性字段,可以将顺序建议拟订为MII的特殊性能。我们提议一个顺序建议模型,即连接边端信息端信息端信息端信息,同时标注三号的自我定位项目(我们错误的IMI),然后通过不断更新数据定位的模型来显示一个更好的自我定位。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2021年6月27日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关基金
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员